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Abstract-Space exploration applications offer a unique 
opportunity for the development and deployment of 
autonomous systems, due to limited communications, large 
distances, and great expense of direct operation. At the 
same time, the risk and cost of space missions leads to 
reluctance to taking on new, complex and difficult-to- 
understand technology. A key issue in addressing these 
concerns is the validation of autonomous systems. In 
recent years, higher-level autonomous systems have been 
qpl ied iE space ap,plications. In this presentation, we will 
highlight those autonomous systems, and discuss issues in 
validating these systems. We will then look to future 
demands on validating autonomous systems for space, 
identify promising technologies and open issues. 

1. INTRODUCTION 

Space exploration is a powerful driver for technological 
advances. To find answers to questions unanswered by past 
missions, space missions continually become more 
complex, go hrther and longer, and provide more involved 
scientific observations. One aspect of the technolbgical 
improvements is the role of human control in operating 
spacecraft. Earth-observing satellites and lunar excursions 
are easily controlled from Earth, albeit at the expense of 
maintaining iarge operations staff. iviore distant missions, 
such as those to Mars and the outer planets, make direct 
human operations more difficult and expensive, due to 
communications time lag and the consequent need for the 
spacecraft to operate for long times without supervision. 
Some mission concepts are impossible with complete 
reliance on human operations; e.g., extended exploration of 
moons orbiting outer planets. 

The use of autonomy in space missions will greatly benefit 
space exploration. First, the operations cost can be reduced 
significantly as fewer human operators are required; an 
essential aspect of making future exploration missions cost 
effective and sustainable. Secondly, the use of autonomy 
will permit spacecraft to achieve more in less time, and to 
accomplish what is otherwise not possible. For example, 
autonomous Mars rovers could respond to interesting events 
like dust storms, while autonomous lunar construction 
rovers could operate continuously. However, autonomous 
systems are still rarely used in space exploration; this is in 
part due to reluctance to change and in part due to a 
technology gap in certifying the behavior of such systems. 

The cost of space missions is extremely high. Cheap Mars 
missions cost hundreds of millions of dollars. For example, 
the Mars Surveyor missions in 1998 (which consisted of an 
orbiter, Mars Climate Orbiter, and a lander, Mars Polar 
Lander) cost over $300 millions. Expensive missions, such 
as Cassini, can cost billions of dollars. Moreover, the risk of 
failure for these missions is still very high. For example, 
even though the systems used in the Mars Surveyor 
missions were fairly simple, both missions were lost. It is 
therefore not surprising that mission managers take a 
conservative approach when designing their missions and 
systems. The first success criterion is to reach the target (be 
it Mars or Titan); then come scientific goals. In this context, 
it is not surprising that the credo of mission managers is to 

fl-y what has been successfully flown before. This leaves 
little opportunities for incorporating new technologies, 
unless they come with strong guarantees about safety and 
reliability. In the case of autonomous systems, this gives 
rise to a very challenging verification and validation 
problem. 

By nature, autonomous systems are required to be more 
flexible than traditional systems. Their strength is in 
adapting to a large set of circumstances, some of which may 
be unknown at design time. This strength becomes their 
main weakness when it comes to validation. Our current 
validation techniques struggle with existing mission systems 
and now we are faced with validating autonomous systems 
that can exhibit a much larger set of behaviors. In fact, even 
the implementation of these systems presents a new 
challenge. In the past, the implementation of embedded 
systems has been quite conservative. For example, dynamic 
memory allocation is allowed only at starting time as a pool 
of available memory, and never at run time. This guarantees 
that the memory consumption stays bounded. This has 
strong implications in terms of the data structures used in 
these systems; e.g., arrays being preferred to dynamic lists. 
Such restrictions make systems somewhat amenable to 
advanced automated verification techniques. Hardly any 
such “useful” restrictions hold for autonomous systems. 

So, should we just give up on validating autonomous 
systems? We certainly should not. The need for autonomy 
in future missions is clear. In addition, inroads have 
recently been made in limited use of autonomy-based 
s o h a r e  for missions. For example, the MAPGEN tool is 
being used in the context of the Mars Exploration Rover 
(MER) mission. MAPGEN is a planning and scheduling 
system which is used to prepare the plans that are up loaded 
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to the rovers at the beginning of each Martian day. Before 
MAPGEN, this task was essentially done by hand, severely 
limiting the trade-off analysis that could be done. The use of 
MAPGEN has allowed the MER ground control team to 
reduce the human involvement, speed up the construction of 
these sequences, and increase science return. Despite its 
obvious advantages, MAPGEN was not easily accepted by 
mission managers. One of the critical obstacles was the 
validation of the system, and while a careful testing process 
satisfied the MER mission’s specific requirements, it was 
clear that a better validation process was needed. This 
observation is valid for any autonomous system that sees 
itself as a candidate for being on-board a spacecraft or a 
rover. The requirements and operational limits placed on 
autonomous spacecraft software, such as the Remote Agent 
Experiment and the EO- 1 Flight Experiment, demonstrate 
this [15]. 

Fortunately, researchers from the Artificial Intelligence and 
Software Engineering communities are recognizing the need 
for good validating techniques. Recently, the research 
community has focused on exploring the commonalities 
between automated validation and verification (V&V) and 
model-based computing. So far, this activity has yielded 
little practical results, but new efforts are underway. In this 
paper, we discuss our approach to tackling the validation 
and verification of autonomous decision-making control 
systems, and highlight some of the techniques being 
applied. 

The goal of our work is to go beyond exploration and trials, 
and move on to develop practical techniques. Our approach 
is as follows. First, since models are at the core of 
autonomous systems, we need to develop techniques to 
verify models, constraints and their manipulations in 
reasoning engines. For that, we plan on relying on model 
checking tec‘hniques, which nave matured considerabiy the 
past few years. This allows us to verify safety properties on 
autonomous systems. In addition, our experience with 
previous NASA software shows that run-time errors (e.g., 
out of bound array accessing, or arithmetic overflow and 
underflow) are the most common programming errors. 
Therefore, we propose to complement model checking with 
the use of static analysis. Recent work has shown that 
modem static analyzers are not plagued with problems of 
scale and the generation of too many false alarms. Yet, we 
believe that scalability will remain an issue since 
autonomous systems yield such large sets of behaviors. We 
tackle this problem from two angles. First, we will rely on 
the assume-guarantee framework to implement a form of 
compositional verification. This allows us to divide the 
verification process into two phases. In the first phase, 
modules are verified separately. In the second phase, 

. verification results for the modules are put together to 
ensure the verification of the whole system. Recent work 
has shown the feasibility of the approach to verify the 
executive a planning and scheduling system. Second, we 
will investigate the automatic synthesis of code for 
autonomous systems. Code synthesis is an interesting and 

useful approach, as it reduces the role played by human in 
code development, while also providing an opportunity for 
controlling the “shape” of the code for autonomous systems. 
This capability is extremely interesting in terms of 
verification because it allows us to bias our verification 
algorithms towards specific coding constructs. This 
typically leads to more precise and scalable verification. 

2. AUTONOMOUS SYSTEMS 

Most autonomous systems use a model-based approach. In 
a model-based system, application-specific information, like 
the capabilities and limitations of a rover, are described in a 
model of the application, not in implemented code. A 
general-purpose reasoning system uses the model to operate 
the entity in question. To ground this, consider a simple 
Martian rover. A model of this rover would describe its 
operational capabilities and limitations at a suitable level of 
abstraction; for example, it would specify that the rover can 
take a picture in a given range of directions, that taking such 
a picture requires the camera and CPU to be powered on, 
and that the taking of a picture will consume given 
quantities of energy and data storage resources. A general- 
purpose model-based autonomous system would then use 
such a model to operate the rover. It would make sure that 
planned operations stay within energy and data storage 
capacity limit and that the execution of planned operations 
yields the expected results. Systems operating rovers, 
spacecraft, and other systems in such a plan-execute cycle 
are very common. 

Model-based autonomus planning and execution systems 
are the primary candidates for future roles in spacecraft 
operations and space exploration.. Consequently, we focus 
our V&V efforts on these systems. To ground our 
examination, we will look at an autonomy architecture 
currently under development in a collaborative effort 
between researchers at NASA Ames Research Center and 
NASA’s Jet Propulsion Laboratory. The architecture is 
based on a robotic control framework called CLARAty 
(Coupled Layer Architecture for Robotic Autonomy). 
CLARAty [16] is a modular architecture, designed 
specifically for space-based robotic control applications. It 
provides a wide-range of robotic control functionality and is 
designed to ease the integration of new technologies on 
robotic platforms. CLARAty features a Functional Layer of 
robotic primitives, coupled with a Decision Layer of 
planning and execution hnctionality; each of these layers 
contains a hierarchy of components ranging from the most 
elementary to the most “intelligent”. 

The Functional Layer (FL) provides a set of standard, 
generic robot capabilities that interface to system hardware 
[16]. These capabilities are organized as a software class 
hierarchy of robotic components; for example, wheeled- 
mobility is a subclass of mobility, and individual rover 
wheel assemblies are child classes. As is natural in object 



oriented systems, the interface is separated from 
implementation. Physical limitations of devices are 
distinguished from algorithmic limitations. Finally, runtime 
models of devices are incorporated in the Functional Layer. 

EUROPA 
Decision layer 

The Decision Layer (DL) [6] provides capabilities for 
autonomously creating and executing sequences of rover 
actions that achieve specified operations tasks. This 
involves planning, schedding, Ilioiiitoied executioii, a d  a 
number of other capabilities. In the past, the decision layer 
capability has been provided by the CASPER planning 
system [4] and the TDL executive [IS], which were 
developed at JPL and CMU. TDL is a Ct+ extension that 
provides syntactic support for task decomposition, 
synchronization, execution monitoring and exception 
handling CASPER is a continuous planning system that 
can continually update the current plan based on changing 
state, environment and mission goal information. 

Domain 
+-- model 

Figure 1. The autonomous system architecture. 

In the autonomy architecture used in our work, the decision 
layer capabilities are provided by the Extendable Uniform 
Remote Operations Planning Architecture (EUROPA). The 
architecture of the integrated system is shown in Figure 1. 
EUROPA is a model-based planning and scheduling 
architecture descended !?om the Remote Agent Planner; 
previous versions of the technology are described in [9, 141. 
Users of ELXOPA can specify the rules of planning 

domains using a rich domain description language that 
supports time, resources, disjunctive preconditions and 
conditional effects. EUROPA provides support for “foreign 
function” calls implementing arbitrary constraints. 
EUROPA consists of a hierarchy of highly configurable 
components, supporting the development of many types of 
planners and plan representations. EUROPA’s plan 
databases employ a generic constraint reasoning capability 
that can support both long-range deliberative planners as 
well as short-horizon continuous planners. Finally, 
EUROPA allows multiple planners to modify the same plan. 

3. V&V CHALLENGES 

The elements of the autonomous system we are considering 
offer different challenges in terms of verification. For 

example, the V&V issues with a planner are quite different 
from the V&V issues of a functional component controlling 
a physical device (such as the wheel of a rover). In the first 
case, V&V is dealing with issues such as correct 
manipulation of plans, domain model consistency checking, 
or correct resource utilization reasoning. In the second case, 
we are more concerned with traditional issues such as 
runtime errors, concurrency and timing problems. The V&V 
tools that can address these problems are quite different. 
Moreover, they are at different maturity levels. In any case 
here is a list of the challenges we are facing. 

Function a1 laver 

The functional layer consists of C++ device controllers 
organized in a hierarchy of controllers. Some are simple 
controllers; others are more complex and consist of several 
components cooperating to implement complex controllers 
(e.g., controllers for wheels include controllers for adjusting 
speed as well as for turning wheels). In general, they do not 
present a new challenge for V&V in the sense that they are 
similar to controllers in embedded systems. Moreover, since 
most of the “intelligence” in autonomous systems is placed 
in the decision layer, they are fairly simple C++ programs. 
Therefore. we do not anticipate any problem applying 
traditional V&V tools such as static analyzers. 

The static analysis of functional components consists of 
verifying their implementations with respect to the formal 
semantics of C++. The main task is to certify that a 
component is free of errors such as array-out-bound 
accesses, null pointer de-referencing, and the use of un- 
initialized variables. These errors are violations of the C++ 
semantics, but are not yet checked by compilers. 
Fortunately, they can be checked at compile time using 
sophisticated static analyzers. These analyzers come in two 
categories. The first one consists of fast and highly scalable 
analyzers, which unfortunately do not guarantee full 
coverage (Coverity, Clockwork). These tools are typically 
useful in a development environment, but not so much in a 
certification context. The second category consists of 
analyzers guaranteeing full code coverage (PolySpace, 
CGS, Astrte) [l, 201. We will investigate the synergy 
between these tools and the certification done in synthesis. 

Furthermore, controllers are fairly small programs, which 
will allow us to check complex properties (such as response 
properties of the style “upon this event occumng, this action 
should be taken”) using model checkers. Model checking is 
the task of verifying that a property (a functional correctness 
criterion) is a model of a system (the code implementing the 
functional component). Functional correctness properties 
are defined using logic or automata. In recent years, there 
has been quite a bit of interest in applying model checking 
to software verification [2, 5 ,  11, 121. These experiments 
have demonstrated two important results. First, model 
checking is applicable directly to code rather than having to 
translate code to a model using some modeling language 
(which always introduces uncertainty with respect to the 



correctness of the translation). For example, the JPF model 
checker works directly on Java byte code. There is on-going 
work to adapt this strategy to C++. Second, scalability 
remains a critical issue. However, this technology can scale 
to a few thousand lines of code, which is sufficient for our 
purpose. 

Physical controllers present another major validation 
challenge that is not always addiessed by the V&V 
community. Indeed, controllers generally assume specific 
behaviors for the physical systems they control. These 
assumptions may not correspond to the physical reality. 
This may be addressed by using high-fidelity testbeds, 
though it only postpones the problem to the validation of the 
testbed. Ultimately, there is no escaping field testing to 
verify that the behavioral assumptions fit reality. Even there, 
we are only able to approximate the conditions under which 
these applications will be deployed (e.g., Mars). 

Decision layer 

Verifying a planner is an enormous challenge considering 
that planners are meant to find intricate solutions in very 
large state spaces. Therefore, pretending to be able to verify 
the same state space with V&V tools seems somewhat 
futile. However, search techniques in V&V tools have one 
advantage, in this respect. over planning search techniques; 
they take advantage of abstraction. Typically, V&V tools 
focus on one property at a time, which allows them to focus 
their search on specific aspects of the state space while 
blurring the rest in a conservative (in the sense that they 
generalize behaviors into classes of behaviors rather than 
eliminating some behaviors) abstraction. In principle, search 
techniques in planning could achieve the same by using 
appropriate heuristics (i.e., the heuristic computes the 
abstraction dynamically). Incidentally, abstraction is also 
used to verify functional components. In any case. since the 
problem of verifying a planner is so complicated one might 
wonder what can be done to give us some assurance that the 
planner does its job. 

First, we can look at the domain model used by the planner. 
Model checking techniques can be used rather efficiently to 
prove interesting properties on models. For example, model 
checkers can be used to check for inconsistencies, 
ambiguities, and, in some cases, incompleteness. Pecheur 
and Cimatti showed the feasibility of this approach by 
applying it to diagnosis systems [ 171. There seem to be two 
complementary approaches. The first approach consists of 
translating the constraints in the domain modcl into S M V  
properties and then using the S W  symbolic model checker 
to verify the properties [3]. In general, symbolic model 
checking scales very well. This is especially true for the new 
generation of checkers based on SAT resolution. The second 
approach relies on explicit state model checkers (in which 
the state space is explored using DFS or BFS search 
algorithms) such as SPIN [I31 or JPF. Pechcur showed that 
they can be used to diagnose ambiguities in models. 

Second, we can actually verify that some basic planner 
capabilities are correctly implemented. Planners manipulate 
plans, which are nothing but list or tree data structures. In 
general, lists constitute a hard problem for static analyzers 
and model checkers. Part of the problem resides in the fact 
that they can grow unbounded. However, the fundamental 
problem is that, so far, they have not laid themselves well to 
abstractions. Therefore, advanced V&V tools are mostly 
used as advanced testing tools. For example, an explicit- 
state model checker is used to explore all concurrent aspects 
for a given test input. To realize that, it also has to closely 
approximate the system behaviors; this results in a loss of 
scalability and generality. Furthermore, these tools do not 
provide much benefit over the traditional testing paradigm 
since they still rely on generating appropriate (Le., 
meaningful with respect to the application conditions and 
extensive in terms of behavioral or code coverage) test sets. 

Fortunately, recent research has shown that it is possible to 
design efficient absrraction for some specific types of lists 
and trees. For example, Venet has designed a numerical 
abstraction for well-behaved (which we will left unspecified 
at this time) lists [19]. He uses this abstraction to design a 
static analysis that is precise, and scalable, for these lists. 
For example, the analysis can track order (e.g., causal) 
relationships amongst list elements. In another example, 
Visser and Pasareanu use a list abstraction that can be used 
to automatically generate test cases for programs 
manipulating complex data structures. Their technique 
propagates throughout the program a symbolic list 
representation that is partially concretized when individual 
fields (of the data structure) are accessed by the currently 
considered instruction. This “lazy” concretization strategy 
can bc used to obtain test inputs that provide a specific 
coverage of the program. We believe that such techniques 
are getting mature enough that we can use them to provide 
meaniiigfiili: V&V iesiilts ciii the plaiinci. 

Interface and System Composition 

The problem of verifying an executive layer is not 
fundamentally different from verifying the decision layer. 
Again, we are facing the problem of verifying a program 
that manipulates lists or trees (i.e., plans). While a planner 
puts a list together according to activities, an executive 
checks timing issues and then executes the plans by calling 
the right functional elements at the right time. Again, we 
can use the same techniques (static analysis with numerical 
abstraction and symbolic execution with list abstraction) to 
evaluate the correctness of the executive. Yet, we are still 
left with the problem of verifying that the executive 
interfaces correctly with the planner and the functional 
elements. 

Actually, the problem of composition is not restricted to the 
interface layer. Because of their internal complexity other 
elements face the same issue. For example, a functional 
element might consist of a composition of simpler 
functional elements. The planner itself might rely on 



different modules to deal with different issues such as 
resource checking [8] or reasoning under uncertainty. 
Therefore, it is important to devise a V&V strategy that can 
deal with system composition. It promotes re-usability of 
components (and V&V artifacts) as well as V&V 
scalability. Fortunately, compositional verification has been 
the object of intense research these past few years. We 
intent to build on it and, for example, expand the work of 
Giannakopodou and Pasareanu 3n assume-guarantee 
reasoning. 

Compositional verification is a divide-and-conquer 
technique that aims at taking advantage of the modular 
architecture of a system in order to decompose the hard 
(expensive) problem of system verification into manageable 
verification of its components. The idea is to check 
separately each component against a local property, in order 
to avoid the state-space explosion problem associated with 
checking a global (system-level) property on the entire 
system; this problem occurs as a result of storing the entire 
system state in memory. Components often satisfy 
properties only in specific contexts (or environments). 
Assume-guarantee style compositional reasoning imposes 
that each component makes assumptions about its 
environment (Le. the rest of the system). Of course, these 
assumptions need to be discharged by verifying that the rest 
of the system satisfies them. To automate assume-guarantee 
reasoning, appropriate assumptions must be generated, 
which can be done automatically from legacy code as 
described in [lo]. 

5. THE ROLE OF SYNTHESIS 

As we discussed in the previous section, system 
composition is a central issue in our work. In fact, it is the 
most important aspect of our work since our goal is to 
provide a framework allowing a fast, and trusted, 
reconfiguration of autonomous systems. For example, we 
look at scenarios where some physical elements (such as 
cameras on rovers) can be plugged in and out of the system. 
Another more extreme scenario consists of changing the 
planner or, at least, modifying the planning strategy. Our 
target users are users, and not designers, of this technology. 
Therefore, we want to automate the reconfiguration of the 
system. To accomplish this goal, we will heavily rely on 
software synthesis. 

Software synthesis is the process of automatically 
generating programs from high-level specifications by 
successive steps. Software synthesis can be used to 
automatically generate programs to perform a desired 
fimction from a given software component library. The goal 
of certifiable synthesis is to separate the code generation 
from the notion of correctness of the code while still 
providing support for verification in the form of 
automatically generated annotations [7]. For example, 
Fischer et al. use techniques based on schema rewriting 

rules to generate both code and annotations, and, automated 
theorem proving and proof checkers to certify the generated 
code. Existing techniques use automated theorem proving 
(i.e. no user intervention, and therefore, no expertise 
required). Past experience shows that synthesis can be 
adapted to practical applications, even those involving 
complex mathematical specifications such as differential 
equations. Existing work has demonstrated realistic 
p rcg rm synthesis in the domains of state estimation [21] 
and data analysis software. Other tools have been used to 
generate code functionally equivalent to the attitude control 
system of the Deep Space 1 spacecraft, as well as data 
analysis code for Hubble planetary data. 

Moreover, the generation of annotations offers opportunities 
of synergy between synthesis and software verification 
techniques, such as 

pre-verification of the schemas - providing some 
support for moduiarization of the verificarion process, 

generation of certification conditions - allowing an 
earlier use of verification, 

availability of high-level contextual information - 
providing us with clues about the user intent, 

control over the coding constructs, - allowing us to 
pick the construct most amenable to verification, and, 

control over the structure of the generate code, - 
allowing us to reduce the state space explored by the 
verification engines. 

Our strategy consists of placing synthesis at the center of the 
reconfiguration process. By controlling the structure of the 
code we generate we can limit the risks associated with 
using advanced V&V techniques (see previous section). 
Moreover, synthesis comes with a certification strategy that 
we can use to provide trusted systems. 

6. CONCLUSION 

In this paper, we presented a strategy to verify autonomous 
systems (in our case, planning and scheduling systems). We 
are relying on a combination of advanced verification 
techniques (static analysis, model checking, compositional 
verification, and automated test generation) and code 
synthesis (with certification) to provide trust in these types 
of systems. Our approach goes together with a design 
strategy in which we configureldesign autonomous systems 
based on known building blocks (the CLARAty functional 
components and the EUROPA framework). Therefore, the 
notion of composition (in terms of both verification and 
system design) is critical to the success of our endeavor. 

We believe that our approach is a good starting point to 
designing practical V&V techniques for autonomous 
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systems. However, we are very interested in the opinion of 
the research community. Therefore, we hope that this talk 
will be an opportunity to spark interest in the validation of 
autonomous systems. We are looking forward to the 
discussions that our approach is bound to create. 

We would like to acknowledge the contributions of the other 
members of our project to this discussion. Jeremy Frank, 
Tara Estlin, and Mark Boddy provided invaluable 
information about P&S technology (in particular with regard 
to CLARAty and EUROPA). Dimitra Giannakopoulou and 
Ewen Denney were also precious in shaping our vision 
about verification and synthesis. 
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